
Free Choice Disjunction as a Rational Speech Act
It is well known that (1) has the Free Choice inference (FCI) (1a),(1b). More controversially,

(1) may also lead to the exclusivity inference (EI) (1c). As (2) shows, EI is easier to cancel than
FCI; as (3) shows, FCI disappears under negation. Unembedded disjunction lacks an analogue of
FCI but may give rise to EI (4). Our work is situated within the literature that takes these facts to
motivate nonsemantic accounts of FCI and EI, broadly speaking (e.g. Fox, 2007; Franke, 2011).

(1) You may take an apple or a pear. �(A∨B)
a.  You may take an apple. �A
b.  You may take a pear. �B
c.  You may not take both. ¬� (A∧B)

(2) a. You may take an apple or a pear. #In fact, you may not take an apple.
b. You may take an apple or a pear. In fact, you may take both.

(3) You may not take an apple or a pear. ¬� (A∨B)
a. 6≈ You don’t have both permissions; I leave open whether you have one. ¬(�A∧�B)

(4) John took an apple or a pear. A∨B
a. 6 John took an apple and a pear. A∧B
b.  John did not take both an apple and a pear. ¬(A∧B)

We show that FCI and EI fall out of inference over LFs in a cooperative language game without any
assumptions about speaker ignorance. We derive both FCI and EI using a game-theoretic model in
the Rational Speech Acts framework (RSA, Frank and Goodman, 2012). Our work, like e.g. Potts
et al. (2016), reconciles exhaustification-based models (Fox, 2007) with game-theoretic accounts
in the style of iterated best response (IBR, Franke, 2011). On our account, when the speaker
utters (1), the listener reasons about why the speaker did not choose alternatives such as (1a). A
crucial ingredient in our explanation is uncertainty about LFs (cf. lexical uncertainty in Bergen
et al., 2016). We assume that the speaker is unsure whether the listener might take (1a) as entailing
a prohibition against taking a pear; this is analogous to Fox’s optional exhaustification operator
Exh. Uttering (1) as opposed to (1a) or (1b) is a way to prevent the listener from concluding about
any fruit that it is forbidden to take it. Knowing this, the listener concludes that (1) signals FCI.
Whether EI arises as well depends mainly on its prior probability.

Our model assumes a state space {Only A,Only B,Only 1,Any #,Only 2} where in Only A, A
is allowed but B is forbidden; in Only 1 FCI and EI hold (any one fruit is allowed); in Any #, FCI
holds but not EI, thus taking both fruit is allowed as well; and in Only 2, the only thing allowed
is taking both fruit. Our utterances {u�A,u�B,u�(A∨B),u�(A∧B)} are labeled with their meanings in
the absence of Exh; however, we assume that there is uncertainty in the sense of Bergen et al.
(2016), for example about whether the semantic meaning of (1a) = u�A in the given context is
{Only A,Only 1,Any #,Only 2} or {Only A,Only 1,Any #} or {Only A}. This uncertainty stems
from different LFs that are available for (1a) due to optional insertion of Exh in the sense of Fox
(2007): either simply �A, or �Exh(A), or Exh � (A). Likewise, (1) = u�(A∨B) has at least the LFs
�(A∨B), �Exh(A∨B), and �(Exh(A)∨Exh(B)) (the last two are equivalent). With Fox (2007)
and similar approaches, we see insertion of Exh into an LF as a grammaticalized operation that is
distinct from Gricean/Bayesian reasoning; like Potts et al. (2016), we go beyond Fox in explicitly
modeling the coordination problem that arises from a silent Exh operator. We represent uncertainty
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about LFs via the form-meaning mappings L1, L2, L3 in (5)-(7) (cf. lexica in Bergen et al. 2016).

(5) Ju�AKL1 = {Only A,Only 1,Any #,Only 2}, Ju�BKL1 = {Only B,Only 1,Any #,Only 2},
Ju�(A∨B)KL1 = {Only A,Only B,Only 1,Any #,Only 2}, Ju�(A∧B)KL1 = {Any #,Only 2}

(6) Ju�AKL2 = {Only A,Only 1,Any #}, Ju�BKL2 = {Only B,Only 1,Any #},
Ju�(A∨B)KL2 = {Only A,Only B,Only 1,Any #}, Ju�(A∧B)KL2 = {Any #,Only 2}

(7) Ju�AKL3 = {Only A}, Ju�BKL3 = {Only B}, Ju�(A∨B)KL3 = {Only A,Only B,Only 1,Any #},
Ju�(A∧B)KL3 = {Only 2}

Our model is robust to certain changes in these assumptions. E.g., dropping L1 or L2 still
generates FCI, as does adding Li that mix elements of (5)-(7). — The RSA framework represents
listeners as rational Bayesian interpreters and speakers as soft-max rational agents. Speakers’ and
listeners’ reasoning obeys the recursive probabilistic functions in (8) for worlds w, utterances u,
greedy optimality parameter α , and mappings L . Here, L u(w) = 1 if w ∈ JuKL , and 0 otherwise.

(8) a. Plistener 0(w|u,L ) ∝ L u(w)P(w) b. Pspeaker 1(u|w,L ) ∝
[
Plistener 0(w|u,L )

]α

c. Plistener 1(w|u) ∝ P(w)∑L Pspeaker 1(u|w,L )

d. For n > 1: Pspeaker n(u|w) ∝
[
Plistener (n−1)(w|u)

]α e. Plistener n(w|u) ∝ P(w)Pspeaker n(u|w)

This model derives FCI for the level-1 pragmatic listener, in that for uniform priors P(w), Li
as above, and sufficiently large α , the posterior distribution Plistener 1(·|u�(A∨B)) splits its proba-
bility mass almost evenly between the FCI+EI world Only 1 and the FCI-EI world Any #, with
virtually no mass assigned to the non-FCI worlds. (For lower values of α , FCI arises only for
n > 1-listeners.) For nonuniform priors P(w) that assign some FCI world a high prior probability,
Plistener 1 upon hearing u�(A∨B) also assigns it a higher posterior probability; this derives the op-
tionality of EI as a matter of prior knowledge, at least when using just (5)-(7). The low posterior
probabilities of non-FCI worlds remain virtually unaffected by shifting a comparable amount of
probability mass to any of them in the prior; this explains why FCI is a stronger inference than EI.

Our model captures the absence of FCI under negation under plausible assumptions about the
possible meanings of the utterances involved; specifically, we assume that one of the LFs for (3) is
equivalent to the classical ¬� (A∨B), with no Exh inserted, which semantically entails ¬�A and
¬�B. Other, weaker LFs which contain Exh lack this entailment; we show that their presence does
not lead the listener to conclude FCI. By contrast, Fox (2007) relies on a stipulation that prevents
Exh insertion into LFs whose semantic meaning would be weakened as a result (Chierchia, 2013).

Our model has much in common with IBR, a precursor of RSA which Franke (2011) applies to
free choice. IBR is similar to RSA with α =∞, but there are crucial differences. First, Franke relies
on the fact that u�(A∨B) emerges as a surprise message at higher levels. This turns out to prevent
his analysis of free choice from working in RSA, where due to α < ∞, any speaker will choose
u�(A∨B) with nonzero probability. Second, Franke uses only L1; in RSA, this would cause level-1
listeners to put so little credence in the FCI worlds that FCI fails to emerge even at higher levels.
Finally, to avoid predicting that plain disjunctions like (4) are surprise messages, Franke moves to
a more complex setting that models speaker ignorance. We do not have to rely on this: For a state
space {A,B,Both}, utterances {uA,uB,uA∨B,uA∧B}, with two Li that disagree only on whether uA
and uB are true at Both, a level-1 listener who hears uA∨B will assign most of the probability mass
to A and to B. To convey A, speakers will prefer uA over uA∨B but not entirely avoid the latter.
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