

PROPOSAL

Goal: Derive Free Choice Inference (FCI) and Exclusivity Inference (EI) using the Rational Speech Acts Framework (RSA, Frank & Goodman 2012).

Main Contribution: Reconciling exhaustification based models (Fox, 2007) with game-theoretic accounts in the style of iterated best response (Franke, 2011).

Technical Innovation: Incorporating lexical uncertainty in the style of Bergen et al. (2016) in order to derive Free Choice within RSA.

INTRODUCTION

Free Choice Inference (FCI):

You may take an apple or a pear. a. \rightarrow You may take an apple. b. \rightarrow You may take a pear.

Exclusivity Inference (EI):

You may take an apple or a pear. (2)

a. \rightsquigarrow You may not take both.

THE RSA FRAMEWORK

Communication is modeled as a speaker and a listener recursively reasoning about each other's goals and behavior.

 $P_{listener 0}(w|u, \llbracket \cdot \rrbracket_i) \propto [[u]]_i(w)P(w)$ $P_{speaker 1}(u|w, \llbracket \cdot \rrbracket_i) \propto \left[P_{listener 0}(w|u, \llbracket \cdot \rrbracket_i)\right]^{\alpha}$ $P_{listener\,1}(w|u) \propto P(w) \sum_{\llbracket \cdot \rrbracket_i} P_{speaker\,1}(u|w,\llbracket \cdot \rrbracket_i)$ $P_{speaker n}(u|w) \propto \left[P_{listener (n-1)}(w|u)\right]^{\alpha}$ (n > 1) $P_{listener n}(w|u) \propto P(w) P_{speaker n}(u|w)$

Where:

[·]*ⁱ*: Utterancemeaning mapping *u*: Utterance w: World state α : Temperature

FREE CHOICE DISJUNCTION AS A RATIONAL SPEECH ACT

LUCAS CHAMPOLLION (champollion@nyu.edu), ANNA ALSOP (aalsop@nyu.edu), IOANA GROSU (ig950@nyu.edu)

DERIVING FREE CHOICE AND EXCLUSIVITY INFERENCES

We derive FCI and EI from pragmatics. We also derive the comparative weakness of EI relative to FCI.

Deriving FCI: A model that assigns (near-)zero probability to the worlds Only Apple, Only Pear, and Only Both upon hearing the disjunction can be considered to have derived FCI.

• Our model derives FCI for the level-1 pragmatic listener. Here we show L1 with uniform priors.

State Utterance	Only Apple	Only Pear	Any Number (FCI, no EI)	Only One (FCI, EI)	Only Both
"You may take an apple"	1	0	0	0	0
"You may take a pear"	0	1	0	0	0
ou may take an apple or a pear"	0	0	0.5 (0)	0.5 (1)	0
u may take an apple and a pear"	0	0	0 (0.5)	0	1 (0.5)

Deriving EI: Assigning a low probability to the Any Number world upon hearing the disjunction.

- With uniform priors as above, we do not derive EI.
- To explain why EI is weaker than FCI, it should be possible to derive free choice and still assign a high probability to the Any Number world.
- In our model, EI arises when we assume non-uniform priors. E.g., doubling the prior on the Only One world shifts posterior probability to it, away from Any Number (see the violet numbers).
- Similarly boosting priors of the Only Apple or Only Pear worlds barely affects their posteriors.

The Point: The listener always derives FCI (Any Number, Only One). Whether or not EI arises is dependent on the prior. High/low priors on the Any Number world correspond to high/low posteriors.

COMPARISON WITH PREVIOUS WORK

Fox (2007):

• Fox licenses Exh insertion whenever it eliminates ignorance inferences. This is not enough to rule out LFs that are actually unavailable, such as $\diamond Exh(A \lor B)$, which don't give rise to free choice. • Our model derives the absence of free choice under negation, whereas Chierchia (2013) notes that Fox (2007) doesn't explain why Exh can't be inserted under negation.

Franke (2011):

• For Franke, L1 expects the speaker never to use the disjunction. If the speaker uses it nonetheless, Franke stipulates that L1 interprets disjunction literally; L2 then reasons that the speaker would prefer this message only in the Only One world.

REFERENCES

Bergen, L., Levy, R., and Goodman, N. D. (2016). Pragmatic reasoning through semantic inference. Semantics & Pragmatics, 9(20). Chierchia, G. (2013). Logic in grammar: Polarity, free choice, and intervention. OUP Oxford. Fox, D. (2007). Free choice and the theory of scalar implicatures. In Sauerland, U. and Stateva, P., editors, Presupposition and *Implicature in Compositional Semantics,* pages 71–120. Palgrave Macmillan, London, UK. Frank, M. C. and Goodman, N. D. (2012). Predicting pragmatic reasoning in language games. *Science*, 336(6084):998–998. Franke, M. (2011). Quantity implicatures, exhaustive interpretation, and rational conversation. *Semantics & Pragmatics*, 4(1):1–82.

